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Diagnosis-Guided Deep Subspace Clustering
Association Study for Pathogenetic Markers
|dentification of Alzheimer’s Disease
Based on Comparative Atlases
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Abstract—The roles of brain region activities and geno-
typic functions in the pathogenesis of Alzheimer’s disease
(AD) remain unclear. Meanwhile, current imaging genet-
ics methods are difficult to identify potential pathogenetic
markers by correlation analysis between brain network and
genetic variation. To discover disease-related brain con-
nectome from the specific brain structure and the fine-
grained level, based on the Automated Anatomical Labeling
(AAL) and human Brainnetome atlases, the functional brain
network is first constructed for each subject. Specifically,
the upper triangle elements of the functional connectivity
matrix are extracted as connectivity features. The cluster-
ing coefficient and the average weighted node degree are
developed to assess the significance of every brain area.
Since the constructed brain network and genetic data are
characterized by non-linearity, high-dimensionality, and few
subjects, the deep subspace clustering algorithm is pro-
posed to reconstruct the original data. Our multilayer neural
network helps capture the non-linear manifolds, and sub-
space clustering learns pairwise affinities between sam-
ples. Moreover, most approaches in neuroimaging genetics
are unsupervised learning, neglecting the diagnostic infor-
mation related to diseases. We presented a label constraint
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with diagnostic status to instruct the imaging genetics cor-
relation analysis. To this end, a diaghosis-guided deep sub-
space clustering association (DDSCA) method is developed
to discover brain connectome and risk genetic factors by
integrating genotypes with functional network phenotypes.
Extensive experiments prove that DDSCA achieves supe-
rior performance to most association methods and effec-
tively selects disease-relevant genetic markers and brain
connectome at the coarse-grained and fine-grained levels.

Index Terms—Brain imaging genetics, deep subspace
clustering, functional connectivity network, diagnosis
information, sparse canonical correlation analysis.

[. INTRODUCTION

LZHEIMER’S disease (AD) is considered the main cause
A of the cognitive decline, and the incidence of AD in the
elderly worldwide lies at a high level [ 1]. Before presenting obvi-
ous symptoms, such as memory decline, further causing speech
and sleep disorders, and thought confusion, it requires several
years of slow degeneration of the brain, and this degeneration
is irreversible. Therefore, how to diagnose this disease at an
early stage and alleviate the progression of AD through timely
treatment is a hot research topic.

As a brain disease, AD mainly manifests in two aspects.
One is the degeneration of the brain structures and functions
in the macrolevel and the other is the potential heritability in the
microlevel. Brain imaging genetics is a rising field of brain re-
search in recent years, which integrated analysis of macroscopic
brain imaging data and microscopic genetic data [2]. Noting that
single nucleotide polymorphism (SNP) as genetic data is the
genomic variant at a single base position in the deoxyribonucleic
acid (DNA). Meanwhile, brain imaging quantitative trait (QT)
is the measurable phenotype of the human brain. Our work
aimed to jointly analyze SNPs and brain QTs and further study
associations between them, which could provide new insights
into the phenotypic, genetic, and molecular characteristics of
the brain. Furthermore, distinct brain atlases result in distinct
partitions in the aspect of the number of regions and the size and
location of these regions in the brain. To verify the association
performance with distinct atlases and identify brain markers
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at the coarse-grained and fine-grained levels, we focused on
developing a novel imaging genetics method to discover risk
SNPs and brain connectome by integrating genetics data and
functional brain network constructed based on two different
atlases.

For neuroimaging genetics studies, early works mainly con-
centrated on pairwise univariate analysis for exploring associa-
tions between SNPs and QTs. The univariate approaches regard
every SNP or region of interest (ROI) as an independent variable,
which neglected the complex relations between them [3]. Later,
the bi-multivariate analysis is developed to explore complex
correlations between multiple SNPs and multiple QTs. For
instance, Witten et al. developed the sparse canonical correlation
analysis (SCCA) [4] with the lasso penalty to obtain sparse
association results in imaging genetics. After that, SCCA and its
variants gained increasing attention because of their simplicity
and efficiency. In 2014, aknowledge-guided SCCA (KG-SCCA)
was introduced for utilizing prior structures to capture weight
similarity between group features [5]. The discriminative SCCA
(DSCCA) [6] was then presented by Yan et al., which intro-
duced a penalty term with the diagnostic information of data
to explore imaging-proteomics associations. To further reflect
the non-linear relationships of the original data, kernel CCA
(KCCA) [7] as a non-linear extension of CCA was proposed
to learn meaningful representations of data. Shortly after, the
deep CCA (DCCA) [8] was developed to achieve the non-linear
transformations of two views of data.

Currently, to further comprehend the interaction mechanism
among SNPs and QTs, several scholars used genes and brain
regions as nodes to construct networks for exploring the func-
tional correlations between pathogenetic factors. For instance,
literature [9] reviewed the corresponding studies on association
analysis between genes and brain functional connections. Wang
et al. adopted a multi-modality regression framework [10] to ex-
plore network features related to a risk SNP and disease status by
using network prior knowledge. Bi et al. also designed a fusion
network to integrate brain regions with genes, and presented
a genetic evolutionary random forest (GERF) approach [11]
to solve problems of small sample size and high-dimensional
features. Moreover, in 2022, they further developed a graph con-
volution model to enrich node features of the network by feature
aggregation [12]. Though the above constructed networks are
associated with genotypic and brain disease, they only attached
importance to identifying disease-related brain imaging markers
of the network at the coarse-grained level.

As each brain ROI may be involved in many anatomical
regions at the same time, to further improve the anatomical
interpretability, atlas-based partition feature extraction methods
with a predefined brain atlas are used to extract brain features.
Presently, the automated anatomical labeling (AAL) atlas is
the most popular brain atlas, which has been widely applied
to explore a variety of brain diseases in recent years [6], [13].
Since AAL brain atlas covers mainly specific structures and
lacks fine-grained parcellations, to further provide functionally
important connectivity information of the brain, a connectivity-
based Brainnetome (BN) atlas that identified subdivisions of the
entire human brain is developed to reveal the in vivo connectivity

architecture. Distinct brain atlases provide distinct partitions
based on the number of regions and the size and locations
of these regions in the brain. Up to now, few studies verified
the association performance using different brain atlases, and
no study has employed the BN atlas to explore correlations
between genotypes and brain network phenotypes. Here, we
aimed to employ the two mentioned brain atlases to perform
association analysis between brain network QTs and SNPs and
extract biomarkers for AD diagnosis.

In our work, to further explore connections among brain areas,
the brain functional connectivity network is constructed based
on resting-state functional magnetic resonance imaging (fMRI)
data. Nodes of the brain network denote ROIs and edges denote
the connectivity among brain areas [14]. Specifically, to further
identify the disease-related connectome in brain networks from
the coarse-grained and fine-grained levels, the fMRI data are
parcellated by the AAL atlas and human BN atlas, respectively.
Then, average the time series of every brain region and construct
a functional connectivity (FC) matrix for each subject. The
node importance is calculated using the graph theory indicators.
Meanwhile, edge features are extracted from the FC matrix
to reflect the connection strength between brain areas. Based
on the brain network constructed from the coarse-grained and
fine-grained levels, this paper aims to comprehensively select the
brain connectome (including node and edge features) and risk
SNPs by correlation analysis between SNPs and fMRI imaging
data.

Since the AD Neuroimaging Initiative (ADNI) data involve
high-dimensional features and a limited number of subjects
distributed on non-linear manifolds, existing methods are hard
to identify effective correlations. Moreover, most of the associ-
ation studies are unsupervised bi-multivariate methods, and its
identified SNPs or ROIs could be disease-irrelevant. To solve the
problems above, a novel diagnosis-guided deep subspace clus-
tering association (DDSCA) model is proposed for identifying
the risk SNPs and brain network features. The main innovations
of the work are given below.

1) DDSCA aims to explore the AD-related connectome
and SNPs by association analysis between genotypes
and network phenotypes from coarse-grained and fine-
grained levels. Thus, based on AAL and human BN
atlases, we constructed brain functional networks for each
subject and further integrated genetic data with brain
networks.

2) Deep subspace clustering is proposed to reconstruct the
original data. Our neural network captures the non-linear
structure of data and subspace clustering learns pairwise
affinities between samples. For utilizing the diagnosis
information to select the disease-relevant features, a label
constraint termis presented to instruct the imaging genetic
association learning.

3) Numerous experiments prove the superiority of DDSCA
on distinct kinds of phenotype data, including brain net-
work, node features, and edge features. DDSCA also
finds some disease-relevant SNPs and brain connectome
that involves the specific brain structure and fine-grained
subregions.
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TABLE |
CHARACTERISTICS OF ALL SUBJECTS

Variables NC SMC EMCI LMCI AD
Subject Number 37 14 41 31 26

Gender (male/female) 16/21 5/9 17/24 20/11 11/15

Age (meanztstd) 75.96£7.04 73.46£5.52 71.57+5.84 71.76£7.62 72.65%7.45

The remainder of this paper is organized as follows. The data
description and our proposed method are shown in Section II.
Experiments and biological analysis are given in Section III.
Discussion and limitations are revealed in Section IV. At last,
conclusions are given in Section V.

[I. MATERIALS AND METHODS

A. Brain Imaging Genetics Data

The fMRI neuroimaging and genetic data utilized in the paper
are from the ADNI database. In 2003, Principal Investigator
Michael W. Weiner, MD developed the ADNI. As a longitudinal
multicenter study, it aims to obtain clinical, imaging, genetic,
and biochemical biomarkers for the early detection and tracking
of AD. In this work, by aligning SNP and fMRI data, and
then removing samples with missing values, we can obtain 149
valid samples, including 26 AD, 37 normal control (NC), 14
significant memory concern (SMC), 41 early mild cognitive im-
pairment (EMCI), and 31 late MCI (LMCI). Using the regression
weights derived from the NC participants, fMRI and SNP data
were pre-adjusted for removing the effects of the baseline age
and gender factors. Detailed contents of data have been listed
in Table I. The multi-modal data in this study are obtained from
the ADNI (https://adni.loni.usc.edu/). Our work is available at
https://github.com/JiaoCuina/DDSCA.

Moreover, to reduce the influence of noise caused by data
acquisition and physiology, all fMRI data must be preprocessed.
Standard preprocessing steps for fMRI data are implemented in
DPARSEF v5.4 toolbox (http://rfmri.org/DPARSF). The specific
processes included transforming formats, removing the first
10 volumes, slice timing, adjusting head motion, normalizing,
smoothing with a 4mm full width at half maximum (FWHM)
Gaussian kernel, removing linear trends, filtering with cut-off
frequency of [0.01 0.1] Hz, and eliminating the covariates.
Finally, the AAL atlas and BN atlas (http://www.nitrc.org) are
used to segment the functional image into 90 ROIs and 246 ROIs,
respectively. Each subject contains the time signal sequences of
all ROIs. For the genetic data, the quality control (QC) for SNPs
is performed by using the PLINK v1.9 software. Through the
deletion rate QC, Hardy-Weinberg test with P < 1 X 1076, and
minor allele frequency less than 0.05, 85 SNPs extracted from
risk genes [15] are applied in the research.

B. Brain Networks Construction

1) Brain Connectivity Features: As mentioned earlier, al-
teration in brain functional connectivity between brain areas
is expected to provide potential biomarkers for classifying or
predicting brain diseases. Suppose that each subject consists of
k ROIs from fMRI data, then the time series of every ROI for

every subject is calculated by averaging the fMRI time series
across all voxels in each of £ ROIs. Then, the Pearson corre-
lation coefficient (PCC) is utilized to calculate the functional
connectivity between the ROI pairs.

In this functional brain network, each ROI can be seen as a
node, and the correlation coefficient denotes the edge weight.
The functional connectivity matrix is normalized to the Z score
through the Fisher’s r-to-z transformation, constructing a k x k
symmetric FC matrix for every subject. Furthermore, to obtain
significant network features, all negative correlations are ne-
glected. Lastly, after removing k& diagonal elements, the upper
triangle components of the FC matrix are extracted as connec-
tivity features for the brain network. That is to say, the functional
connectivity features of each subjectare (k x (k — 1))/2, which
contain 4005 and 30135 features for AAL and human BN atlases,
respectively.

2) Brain Region Features: The study [16] has indicated that
the topological property and the connection property can com-
prehensively measure the significance of a brain region. Here,
the notion of the clustering coefficient is applied to explore the
local topological property of a node, and the average weighted
node degree is used to reflect its connection property.

Thus, after constructing the mentioned FC matrix for each
subject based on AAL and BN atlases, we can obtain an adja-
cency matrix and a weighted matrix, which reflect the degree and
weight of each ROI. Then, the clustering coefficient is calculated
as:

2€i

ac;

where e; denotes the number of triangles that are composed
of a node ¢ with any of its two neighbors and d; denotes the
degree of the node i. Compared with the node degree, the
clustering coefficient can reflect the local clustering property
with its neighborhood, but cannot obtain the average connectiv-
ity strength to its neighborhood. Here, to further calculate the
average connectivity strength of the node to its neighborhood,
the average weighted degree of the node is utilized in this study,
which is given as:

NENUIN
wdi_zﬂeg@ . 2)

where N (i) denotes the collection of nodes that link to the node
i. In the above formula, if node ¢ and j are directly connected, J;;
is the functional connectivity value between them; otherwise, it
takes 0.

Hence, not only to make use of the information of its neigh-
borhood but also to consider the node clustering property, we
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Fig. 1. Visual framework of the proposed method.

can define a novel node evaluation metric:

N; = Mean (ac;, wd;) . 3)

At last, the node significance vectors are calculated as brain
region features in brain networks. Based on AAL atlas, the
human brain is segmented into 90 ROIs, so the dimension of
node features is 90 for each sample. Meanwhile, the brain is
divided into 246 ROIs via BN atlas, so the dimension of node
features is 246 for each sample.

Moreover, Fig. 1 reveals the flowchart of our proposed frame-
work. In detail, edge features and node features of the brain
network are constructed based on the fMRI data that are prepro-
cessed by the BN atlas and AAL atlas, respectively. Finally, a
novel DDSCA model is proposed to discover SNP-QT associa-
tions between genetic factors and brain network features.

C. Sparse Canonical Correlation Analysis

SCCA explores the bi-multivariate associations between
SNPs and brain imaging QTs. Given n subjects with p SNPs
and ¢ brain imaging QTs from m diagnostic groups, X =
[21,...,2,]" € R™*P represents the related genetic data and
Y = [y1,...,ya]" € R™represents the related brain network
data. Then, u € RP*! and v € R?*! are canonical weights cor-
responding to X and Y, respectively. From this, SCCA model
is defined as:

maxuyvuTXTYv,

st ul XTXu < 1,07 YTYv < 1,Q(u) < by, Q(v) < b,
4)

where Q(u) and (v) are sparse penalties to control the sparsity
and select significant SNPs and ROIs. Moreover, the first two
terms are utilized to enhance the covariance structure of data.

D. Deep Subspace Clustering Learning

When identifying associations between SNPs and brain
networks, there exist some challenges in handling the high-
dimensional original data distributed on non-linear manifolds.
In this work, we employ the multilayer feed-forward neural

network to project the original data into the non-linear spaces,
comprehensively preserving the non-linear structures of data.
Further, the output at the top layer of the deep neural network
is clustered by the subspace clustering algorithm to learn the
pairwise affinities between samples. Through the deep subspace
clustering network, we can cluster samples with the non-linear
distribution and further reconstruct the original imaging genetics
data.

In detail, to introduce this module concisely, the input layer of
our feed-forward neural network is denoted as t? =z € R? (or
t) =y €eRYand!=1,2,...,n. Then, the output of the k-th
layers is given as:

t* —q (W““)tl(’“’l) + c(k)) € R%, 5)
where k = 1,2,..., K is the layer number. W(*) ¢ Ré*dr—1
and ¢®) e R represent the weight and bias matrix of the k-th
layer. The d, is the output dimension of the k-th layer and G/(-)
is a sigmoid activation function. For the input data X (or Y) with
n samples, the output T(5) at the top layer is defined below:

T = [th),th),...,t(K 6)

n N

Hence, the input data are mapped into nonlinear spaces to get
TX) by utilizing the deep feed-forward neural network.

Further, to explore the complex multi-subspace structures of
the original data, our method utilizes the self-expressive property
to reconstruct data by conducting subspace clustering at the top
layer iteratively. Subspace clustering can preserve the local data
structure and learn the subject-subject similarity relations [17].
Specifically, self-expressive considers that the output T is a
collection of n subjects from multiple linear subspaces. Thus,
tl(K) in specific subspace can be expressed by other subjects
within the same subspace.

n
1 2
min Zthl(K) —T(K)slH + o sy, su =0,
w2 r
)
where « is a regularized parameter to improve sparsity. Once
get the optimal solution of (7), a n x n self-expressed matrix

A =S| +S|" is obtained to reflect the intrinsic geometric
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Algorithm 1: DDSCA Algorithm.

Input: SNP data X = [21,...,2,] e R"P, 2z € R
Brain network data Y = [y1,...,y,] € R"*%;

Subjects with labels (NC, SMC, EMCI, LMCI, and AD).
Output: Correlation Weights u, v

Optimization:

1: Initialize W(k), c(’“)7 TE andS:;
2:  while not converging do
3: fori=1,2,...,ndo
4: Choose a subject x; randomly and set ¢! = x;;
5. Update W®*) and ¢ by (10);
6: Compute T by (5);
7: Update S by (13);
8: end
9: end while
10: Initialize v and v;
11:  while not converging do
12:  Compute diagonal matrix D, and update u by (16);
13:  Scale u so that ||Aul|3 = 1;
14:  Compute diagonal matrix D» and update v by (18);
15:  Scale v so that | Qu||3 = 1;
16: end while

properties of data. Ideally, A;; # 0 only if the corresponding
datapoints ¢; and ¢; are drawn from the same subspace. In (7), the
first term is applied to reconstruct the input data and ¢;-norm is
utilized to prevent overfitting and ensure sparsity. The constraint
s = 01s enforced to avoid trivial solutions.

At last, to improve the interpretability of the identified
biomarkers, the projection neural activities of the SNP matrix X
and brain network matrix Y can be expressed by f(X) = A, X
and g(Y) = A, Y, respectively.

E. Diagnosis-Guided Deep Subspace Clustering
Association Model

Through deep subspace clustering, we project each subject to
anonlinear space, and then cluster the subspaces at the top K + 1
layer by the self-expressive property. Thus, we can obtain a self-
expressed matrix that ensures sparsity by the subspace clustering
and achieves nonlinearity by the neural network, which further
reconstructs the imaging genetics data.

Moreover, to further effectively find the brain connectome
and SNPs by association analysis between genetic data and
brain network, SCCA is usually utilized to learn canonical
weight vectors for SNPs and network features [4]. However,
SCCA is unsupervised and overlooks the diagnosis information,
resulting in the inability to select some disease-related SNP-QT
associations. To overcome the above problem, a label constraint
with diagnosis information is proposed to instruct the imaging
genetics association analysis, ensuring a supervised framework.
The objective function is defined as:

min Lscca (u,v) + Lg (v),

Analysis

Data Deep Neural Network Subspace Clustering Results

Fig. 2.  Embedding deep subspace clustering network before the as-
sociation analysis.

st u? XTXu < 1,07YTYo < 1,9 (u) < b1, Q (v) < by.
®)

In this model, Ly contributes to selecting the discriminate
imaging QTs by utilizing the diagnosis information, and Lscc 4
explores the bi-multivariate correlations between SNPs and
brain network QTs. Thus, the final objective function of DDSCA
is given as:

min |2 — g (Y) vll; — o f7(X) g (Y) v,

u,v,0f,04

st.ul fT (X) f(X)u <1, |lull; <b1,
oot (Y) g (Y)o <1, [l < ba. ©

In detail, let z € R™*! be a column vector related to the
label elements of n samples. The canonical weights u and v
represent the importance of every feature, such as SNPs or
ROIs. The above elements will boost each other, ensuring a
more appropriate feature selection capability compared to the
existing association studies.

To sum up, DDSCA uses the regression term to achieve the
label constraint on brain imaging data, while applying the SCCA
to both neuroimaging and genetic data. Before this, DDSCA
mainly utilizes the deep subspace clustering network to prepro-
cess the real imaging genetics data, which can reconstruct the
original data by the non-linear subspace clustering. Moreover,
Fig. 2 visualizes the deep subspace clustering process of the
original data before the association analysis.

F. Optimization Algorithm

To address the objective function in (9), a proximal alternating
optimization algorithm is used to get the optimal solution. The
specific iterative update formulas of W), ¢(*) S v, and v are
given here:

Update W*) and ¢*): Let S and T be fixed, then the
update formulas of corresponding W (*) and ¢(*) are learned by
the sub-gradient descent algorithm:

7 ({Wm, C(k)}:(_1>

L (LK) () |2
S

= min
(WO}
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This problem can be solved by the sub-gradient descent
algorithm. Take the derivatives of parameters W*) and ¢(*)
in (10), then set them to zero. For saving space, here we can
update this neural network as follows:

, ) (1)
o®) = 0 — 2L

{W(k) =WH — 00

where ¢ denotes a small positive constant, representing the step
size, which is set as ¢ = 10~% in this study.
Update S: When W) and ¢are fixed, we can get the
update formula of S via:
1 2
in 5 [T - s S|, 12
min - | _+alisl, (12)
Then, take the derivative of (12) related with S and set it to
zero, so the update formula is given as:

(e (1) - (1) (1) o

The W&, ¢(¥) and S are iteratively updated until the error
function in (10) meets the convergence situation.

Update v and v: For updating u or v, the network parameters
W) (k) and S stay in an optimum state. Next, the objective
function of the proposed DDSCA in (9) is transformed into
the following form by using the Lagrange multiplier and then
dropping the constant. Finally, the transformed formula can be
given as follows:

ming ||f (X)u—g (Y) ol + [z =g (Y) 0|3

13)

+ a0 1 (X)ally + 22 g (V) vz + 7 llull + 472 o]l
(14)

where z is a column vector, denoting the diagnosis status of n
samples. A1, Ao, 71, and 7y, are parameters to ensure the global
sparsity. We have proven that the results are insensitive to A; and
Ao settings through the experimental evaluation. Also, according
to some related studies [13], [18], these works have studied a
similar problem using a different approach. Here, they are set to
the fixed values Ay = 1 and A5 = 1 for simplicity.

Finally, take the derivative of Lagrange function in (14) for u
by fixing v, and let it be zero, then we can obtain:

L+ 21) FX)Tf(X)u— f(X) g (Y)v+yDiu=0.
5)
The related updating formula for « is obtained as follows:

-1
w= (D + (14 2) JX)F (X)) FX) g (Y)v.
(16)

Similarly, we can obtain the derivative of v by fixing u, and
set it to zero, then we can get:

2+ 9(Y) g (Y)v—g(Y)" (f (X)u+ 2)+7:Da0=0.
a7
At last, the updating formula for v is given as follows:

)T (X ut ).
(18)

v (72D2+(2 +12)9(Y)"g (Y))

In (18), Dy and D5 are diagonal matrices, in which the 7;-
th element is 1/2||u"||;(r1 € [1,p]) and the ro-th element is
1/2||v"2 ||, (r2 € [1, q]), which cannot be calculated when |u| =
0 and |v| = 0. Hence, 1/2||u" ||, and 1/2|[v"2||, are rewritten

as 1/2v/u"t + ¢ and 1/2v/v"2 + ¢, where ¢ is a real number

with a small value.

Obviously, D; and D5 are dependent on u and v, which are
unknown. So, in the iterative algorithm, first, the initial values
of v and v are given, and then the diagonal matrices of them are
calculated. This process is stopped until the predefined stopping
criterion is satisfied. Algorithm 1 gives the overall optimization
process of the proposed DDSCA method.

G. Convergence Analysis of DDSCA

DDSCA is biconvex and its local optimum can be attained
finally by running Algorithm 1. DDSCA mainly consists of two
parts: deep subspace clustering and the final association model.
To clearly state the stop conditions of DDSCA, we analyze the
convergence of the deep subspace clustering and the association
model, respectively. We record the error values of the above
loss functions in each iteration. The initial iteration is set to
400. Meanwhile, the stopping criterion is to set a threshold
1073 for deep subspace clustering and 10> for the association
model. If the relative changes are lower than the threshold, the
optimization process will terminate. Convergence performance
of two parts in DDSCA is visually shown in Fig. 3. Asrevealed in
Fig. 3(a), for deep subspace clustering, we discovered that error
values decreased within 200 initial iterations, so we empirically
set the number of iterations as 200 in our experiment. For
the association model in Fig. 3(b), the error values decreased
rapidly within 15 initial iterations. This indicates that the fast
convergence is included in the optimization algorithm of the
association model. Accordingly, we empirically set the number
of iterations as 50 for the association analysis experiment.

Ill. EXPERIMENTAL RESULTS
A. Experiment Settings

In our imaging genetics study, for assessing the association
ability, five-fold cross validation (5-CV) is conducted in the
experiment. Meanwhile, the grid search method is applied to
choose the optimum parameters (vy; and ~2) automatically in a
range of {1072,1072,107,1,10%, 102, 103} by a nested 5-CV
on the training set. Furthermore, in the comparison process, the
correlation coefficient (CC) [19] is utilized to verify the associa-
tion performance between SNPs and brain network features. The
higher the CC is, the better the method’s performance is. During
the experiment, for the diagnosis labels control, we employed the
random over sampling strategy to address the sample imbalance
issue. This strategy performs over sampling on imbalanced data
by replicating samples from minority classes and combining
them with the original data, which mitigates the potential bias
introduced by uneven class distribution.

To identify the disease-related brain connectome from the spe-
cific brain structure and the fine-grained level, based on the AAL
atlas and the human BN atlas, we preprocessed fMRI imaging
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data and constructed brain networks. In addition, for discovering
associations between SNPs and brain network features, edge
features are collected from the constructed FC matrix. Three
different neuroimaging node features are also applied in this
experiment, including (1) VBM (voxel-based morphometry):
non-network node features from the structural imaging data
in ADNI; (2) NIP: network node significance calculated by
the page-rank algorithm; (3) NCD: network node significance
learned from the clustering coefficient and the average weighted
node degree. Network is a brain network combined with edge
features and NCD node features.

For node features, VBM is obtained from structural MRI
imaging data, so 90 and 246 ROIs level measurements of mean
gray matter densities are extracted as node features based on
AAL and BN atlases. Also, NIP node features are calculated
using a popular page-rank algorithm in the study [2], which is
defined as s; = >, n(;) $j/pj, where i is a node and N; are
nodes connecting with node 7. s; denotes the score of a node j
and p; is the number of links of node j. The bigger the value of
s;, the higher the significance of the node.

However, the number of edges of the brain network processed
by the human BN atlas is 30135, which is time-consuming to run
on the developed DDSCA model. Thus, itis crucial to utilize fea-
ture selection to reduce redundancy. Here, the ReliefF algorithm
[20] is used to select informative features, which is performed
as an independent data preprocessing step before inputting the
reduced-dimensional data into our framework. Specifically, each
feature of raw data is allocated a weight statistically according
to its relevance to the diagnostic information. From Fig. 4(a),
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Convergence analysis of the DDSCA algorithm. (a) Convergence of deep subspace clustering; (b) convergence of the association model.
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(a) The weight distribution of all edges on BN atlas; (b) the optimal number of edges is selected by the ReliefF algorithm.

we can obtain weights of all edges in descending order, and
then select top § weighted features, which can remove redundant
features. To get the optimal value of 4, the area near the inflection
point in Fig. 4(a) is taken as the parameter selection area of the
0, which is selected from 3000 to 6000 with a 300 interval. The
parameter selection process is shown in Fig. 4(b). It is easy to
observe that a higher CC result is obtained when the § value is
4200.

Moreover, the traditional SCCA (CCA with lasso) [21] is
utilized as the benchmark algorithm. At the same time, DSCCA
[6], DS-SCCA [22], sCCAR [23], KSCCA [7], and DCCA
[8] are comparison approaches in the experiment. The hyper-
parameters of all methods are adjusted according to the related
papers and the best results are obtained. For comparison methods
based on deep neural networks, the related hyper-parameters are
shown here. The maximum epoch is set as 300, the learning rate
is 0.01, and the momentum is 0.99. Three hidden layers are
used here and the number of nodes of each layer is set as 512
according to the related literature [8], [22].

B. Associations Between SNPs and Brain
Network Phenotype

The association analysis experiment of brain imaging genet-
ics is mainly to compare CC results obtained from different
approaches. To prove the robustness of DDSCA, Table II lists
the average testing CC results from seven methods on five QTs
properties of AAL atlas and human BN atlas, respectively. The
bold values denote best results. From these results, we can
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TABLE Il
RESULTS WITH 5-CV ON DIFFERENT QTS PROPERTIES OF AAL AND BN ATLASES

CC (mean%odtstd
Atlas Method VBM NIP N(CD : Edge Network
SCCA 15.40+0.027 8.03£0.081 16.06+0.049 10.55+0.011 9.54+0.083
sCCAR 20.10+0.014 12.03+0.013 18.21+0.023 8.44+0.087 8.53£0.088
DSCCA 20.8240.034 12.4610.023 17.00+£0.035 17.93£0.074 14.88+0.047
AAL DS-SCCA 61.37£0.017 66.33£0.008 68.03£0.017 72.26+0.011 77.33£0.006
KSCCA 30.30£0.061 32.0240.018 37.17+0.031 40.69+0.025 43.36+0.041
DCCA 59.33+0.018 62.32+0.010 63.85+0.006 66.55+0.015 74.5610.002
DDSCA 67.02+0.011 73.90+0.009 78.28+0.011 81.2610.007 87.02+0.002
SCCA 13.29+0.024 11.92+0.041 14.44+0.037 14.18+0.052 12.454£0.056
sCCAR 27.75£0.069 10.64+0.041 15.4240.031 20.92+0.033 23.61£0.037
DSCCA 18.76+0.011 12.70+0.028 19.61+0.042 15.14+0.018 14.95+0.031
BN DS-SCCA 56.77+0.027 58.33+0.015 68.76+0.015 75.05+0.003 79.62+0.002
KSCCA 28.63+0.047 33.68+0.022 36.45+0.024 39.91+0.004 35.73+0.017
DCCA 52.93+0.022 60.28+0.017 59.31£0.016 71.64+0.003 78.06+0.003
DDSCA 68.441+0.007 70.51+0.008 75.30+0.008 83.53+0.003 87.88+0.002
observe that all mentioned methods have stable performance TABLE Il
across five different QTs properties. Though the above meth- ToP 10 ROIS FOR BRAIN NEQVXOQESJS ON AAL ATLAS (L.=LEFT;
ods can get acceptable results, we find that sSCCAR performs '
generally better than SCCA, indicating the effective of the label D  ROLs Abbreviation  Studies
constraint. Moreover, it is observed that DS-SCCA, KSCCA, 40  R. ParaHippocampal gyrus R.PHG [28]
DCCA, and DDSCA outperform other SCCA-based approaches 37 L. Hippocampus L.HIP [30]
.. . 78  R. Thalamus R.THA [25]
significantly. These results prove that the deep extension meth- 89 L. Inferior Temporal gyrus LITG [26]
ods can identify non-linear relations between features and cap- 36  R. Posterior Cingulate gyrus R.PCG [27]
ture the potential correlations between SNPs and brain network 5 L. Superior Frontal gyrus (orbital) ~ L.ORBsup  [33]
phenotypes. More importantly, for different QTs properties, our 41 L. Amyedala . LAMYG [29]
> ’ 88  R. Temporal pole: middle temporal ~ R.TPOmid [26]
proposed DDSCA method obtains the best CC testing results 72 R. Caudate nucleus R.CAU [25]
in both AAL and BN atlases. The reasons are as follows. First, 52 R. Middle Occipital gyrus R.MOG [34]

the multilayer neural network captures the nonlinear manifold
of data and the subspace clustering learns the pairwise affini-
ties between samples. Second, the regression term with label
constraint achieves supervised learning, which can discover
disease-relevant associations.

Among the five QT properties, the better performance is
obtained on the Network property that considers both node
features and connectivity information. Also, node features (NIP
and NCD) and edge features of the brain network are also well
correlated with SNPs, revealing the relations between SNPs and
brain connectome. Noting that NCD node property performs
better than NIP and VBM, which can identify more meaning-
ful biomarkers. Thus, calculating the node significance by the
clustering coefficient and the average weighted node degree is
practical for mining the information of brain areas.

To save space and give a clear description, the heatmaps of
canonical loadings at the AAL atlas obtained from DDSCA on
five QTs properties are shown in Fig. 5. Each column represents
the different brain QTs properties. The estimated weights of z on
the left represent the SNP weights. Also, the estimated v denoting
QTs weights is shown on the right. From Fig. 5, we find that
our proposed DDSCA can identify consistent and clear patterns
(rs429358-C) across all QTs properties. Studies have found that
the APOE SNP rs429358 is the most significant genetic risk
factor for late onset AD [24]. DDSCA also identifies some
consistent SNPs with a much clear pattern on the Network and
NCD properties, including SNPs rs429358 (APOE), rs1081105

(APOE), and rs283814 (NECTIN2), with further research being
warranted forrs188535946. At the same time, some ROI markers
are also detected by the DDSCA. Specifically, a number of
consistent ROIs related to AD are found on both NCD and Net-
work QTs, including Thalamus [25], Temporal [26], Cingulum
[27], and ParaHippocampal [28]. The meaningful ROIs, such as
Caudate [25], Amygdala [29], and Hippocampus [30], are also
identified in previous studies. In short, DDSCA can successfully
explore some valuable SNPs and ROIs closely related to AD by
correlation analysis between SNPs and brain network.

C. The Most Related ROl Markers

To further detect the crucial brain ROIs based on AAL and
BN atlases, we average the canonical loadings obtained on the
Network QTs across five different folds to choose the significant
ROIs. The top 10 maximum weight ROIs based on AAL and BN
atlases are listed in Tables III and IV, respectively. Moreover,
through the ROI drawing function in the BrainNet Viewer v1.7
toolbox [31], the corresponding brain regions extracted from
AAL and BN atlases are visualized in Fig. 6(a) and (b), respec-
tively.

From the above tables and figures, the significant brain regions
and fine-grained subregions related to AD are extracted based
on AAL atlas and BN atlas, respectively. They are not only
consistent with the previous works [11], [32] but also supported
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Fig. 5. Average weight maps of SNPs (left panel) and ROIs (right panel) with five-fold cross-validation on different QTs properties data.

by existing studies. For instance, the significant ROIs identified
on the AAL atlas include Hippocampus and Amygdala [29],
[30], which are closely associated with memory functions of
AD. Meanwhile, the pathological abnormality will first appear
in ParaHippocampal gyrus in patients with AD [28]. Temporal
gyrus is related to visual, memory, and emotional control [26].
Further, the Superior Frontal gyrus has been correlated with
mild cognitive impairment [33]. Occipital lobe is the center
of the visual cortex. The damage to the Occipital gyrus [34]
will result in visual impairment and memory disorder. More
importantly, we also identified ROIs at a fine-grained level based
on the BN atlas, such as the Caudal Hippocampus, Rostral
Hippocampus, and Lateral Amygdala [30], [35]. Some clinical
examples have also verified that significant AD individuals

suffer from movement and perception problems. The atypical
symptoms, such as stiff hands and feet, or curl and incontinence,
are appeared in certain cases. For instance, literature [36] has
proven that the Middle Occipital gyrus identified on AAL is
related to perception and vision in AD. Based on the BN atlas,
we have explored its subregions including mOccG, IsOccG, and
cLinG [34]. Moreover, the Thalamus gyrus identified on AAL
[25] may contribute to the cognitive and emotional control since
patients with AD usually have greater emotional changes. Here,
its subregions Otha, mPFtha, and cTtha have also been detected
on the BN atlas. In addition to verifying previous findings,
the proposed approach also identifies some potential risk ROIs
including Basal Ganglia [37] and Caudal Lingual gyrus [27],
which deserve further investigation.
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Fig. 6. (a) The extracted top 10 ROlIs for brain network QTs property on AAL atlas; (b) the extracted top 10 ROlIs for brain network QTs property

on BN atlas. Different color denotes different brain regions.

TABLE IV
Top 10 ROIs FOR BRAIN NETWORK QTS ON BN ATLAS (L.=LEFT;

R.=RIGHT)
ID Gyrus ROIs Studies
218  Hippocampus R. cHipp [35]
200  Lateral Occipital Cortex R. mOccG [34]
227  Basal Ganglia L.dCa [37]
214  Amygdala R. 1Amyg [29]
242  Thalamus R. Otha [25]
216  Hippocampus R. rHipp [35]
209  Lateral Occipital Cortex L. 1sOccG [34]
232 Thalamus R. mPFtha [25]
190  MedioVentral Occipital Cortex R. cLinG [35]
244  Thalamus R. cTtha [25]

D. Brain Connectivity Analysis

Brain network connections of different subjects reflect the
comprehensive characteristics of different brain systems. In a
brain network, nodes represent the different brain areas. Edges
represent the connections between brain areas. Connectivity
weights denote the connection strength of edges after feature
selection. To analyze the AD-related brain connectome from
different aspects, according to the acquired average sparse co-
efficients by 5-CV, our DDSCA selects the top 10 edges with
maximum weight in the brain network constructed based on
AAL and BN atlases. They are also visualized using the draw
edge function in the BrainNet Viewer v1.7 toolbox.

Edges detected on AAL atlas are shown in Table V and Fig. 7.
We discover that brain region connections between Temporal
gyrus and other brain areas (ParaHippocampal and Olfactory
gyrus) [38] are closely associated with AD. The Olfactory
decline in elderly patients is related to volume reductions in the
ParaHippocampal. Moreover, the selected ROl such as Superior
Frontal Gyrus [39] is related to the Inferior Frontal Gyrus
(Triangular) and Gyrus Rectus in the brain, which reflects the
depression state of AD patients. In [33], this study shows that
the Inferior Frontal Gyrus (Triangular) area is most commonly
related to mild cognitive impairment. The reduction of the
Middle Occipital gray matter and Superior Occipital gray matter
has been correlated with the ability of perception and vision of
AD patients [34]. In addition to verifying the previous studies,
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Fig. 7. Visualization of the edges selected by DDSCA based on the
AAL atlas.

DDSCA also uncovers the disease-relevant brain connectome
like the memory control areas Hippocampus and Amygdala.
Olfactory network includes Gyrus Rectus, Lateral temporal
lobe, and so on [40]. These potential relations among genotypes,
phenotypes, and neuropsychiatric symptoms can be researched
further.

To enhance the visualization clarity, the overall correlation
weights distribution of 24 brain gyri based on the human BN atlas
is also shown in Fig. 8, in which the bigger dots denote higher
connectivity weights. Specifically, Fig. 8 shows the important
functional connectivity of different brain gyrus. The study [41]
has shown that there exist structural associations between Tha-
lamus (Tha) and Caudate gyri, as well as between Hippocampus
(Hipp) and Caudate gyri in MCI €4 carriers. Additionally, FCs
that reveal more contributing power mainly focused between
ParaHippocampal (PhG) and Thalamus (Tha) gyrus [42], and
damaging this pathway would influence the allocentric spatial
memory. In addition to the default mode network (DMN) related
regions, literature [37] also found that there exists abnormal
functional connectivity between BG and Amygdala, and both
of them are associated with cognitive impairment. In early AD
patients, gray matter volume was lower in the Frontal, Temporal,
Occipital, and Parietal lobes, which agrees with the identified
significant ROIs.
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TABLE V
EDGES SELECTED VIA DDSCA BASED ON AAL ATLAS (L.=LEFT; R.=RIGHT)

Number Node 1 Node 2
1 R. Middle occipital gyrus R. Superior occipital gyrus
2 L. Middle temporal gyrus R. Middle temporal gyrus
3 L. Superior frontal gyrus (orbital) L. Superior frontal gyrus (dorsolateral)
4 L. Inferior frontal gyrus (triangular) R. Superior frontal gyrus (orbital)
5 L. Hippocampus L. Amygdala
6 R. Superior temporal gyrus L. Olfactory cortex
7 L. Superior frontal gyrus (medial orbital) L. Superior frontal gyrus (orbital)
8 L. Middle temporal gyrus R. Parahippocampal gyrus
9 R. Gyrus rectus R. Olfactory cortex
10 L. Gyrus rectus R. Superior frontal gyrus (medial orbital)
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Fig. 8. Visualization of the distribution on mean weights of whole-brain
edges based on human BN atlas.

V. DISCUSSION
A. Effect of Parameters

To ensure the sparsity of the self-expressed matrix, the pa-
rameter « is introduced in (7), which is selected in the range
of {0.001,0.01,0.1,1, 10} in the experiment. Furthermore, we
utilized the evaluation indicator CC to assess the performance
of DDSCA. Due to page limitation, the effect of the parameter «
for correlation analysis between SNPs and five QTs properties
on AAL atlas is shown in Fig. 9.

As revealed in Fig. 9, we find that association performance is
sensitive to the parameter «. In detail, DDSCA performs better
when « in the range of {0.01,0.1}, indicating that the self-
expressed matrix in (7) can learn the similarity structure of data.
Obviously, the CC values decrease directly when the « value is
bigger than 0.1. That is, the influence of the constraint term in
(7) tends to be weakened when « value is increasing, resulting
in some non-zero elements in the reconstructive weight vector,
which may ignore the local structure of data.

B. Ablation Experiment of DDSCA

DDSCA is composed of three crucial parts, containing the
regression term with diagnosis labels, the deep neural network,

based on AAL atlas.

and the subspace learning. Here, to verify the effectiveness of
the three important factors in DDSCA, three unique variants
are summarized below. First, to demonstrate the clustering
performance at the top K + 1 layer of this network by the
self-expressive property, we removed the function of subspace
clustering of DDSCA and employed the simple Mean Squared
Error (MSE) loss as a substitute, represented by D1. Second,
to prove the non-linear projection ability of the deep neural
network, DDSCA without the function of the deep neural net-
work is called D2. Third, if eliminate the regression term with
the diagnosis status, we can obtain the degraded model D3.
To save space, the corresponding association results between
SNPs and the fMRI network processed by BN atlas are shown
in Fig. 10. It is observed that our DDSCA is superior to the three
degraded models (without one of the crucial parts), revealing the
significance of the three crucial parts in DDSCA.

C. Limitations and Future Works

The above experiments prove the robustness and superiority
of the presented DDSCA, but there also exist some drawbacks
that would be further addressed. To begin, to further improve
the generalization of our proposed method, we will utilize
a wider variety of brain disease data to better explore new
biomarkers related to other brain disorders. Second, DDSCA
as a deep subspace clustering association study can identify

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 07,2024 at 09:58:22 UTC from IEEE Xplore. Restrictions apply.



3040 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 5, MAY 2024
1 [4] D. M. Witten and R. J. Tibshirani, “Extensions of sparse canonical corre-
0.9 #VBM NIP aNCD lation analysis with applications to genomic data,” Stat. Appl. Genet. Mol.
ik # Bdge m Network Biol., vol. 8, no. 1, pp. _1—27, 2009. o ' ) '
[5] J. Yan et al., “Transcriptome-guided amyloid imaging genetic analysis
0.7 via a novel structured sparse learning algorithm,” Bioinformatics, vol. 30,
0.6 . no. 17, pp. i1564-i571, 2014.
- 0443:%9.3951"'507 [6] J. Yan, S. L. Risacher, K. Nho, A. J. Saykin, and L. Shen, “Identification
o 05 04513 | s of discriminative imaging proteomics associations in Alzheimer’s disease
0.4 via a novel sparse correlation model,” in Proc. Pacific Symp. Biocomput.,
"™ 2017, pp. 94-104.
’ [7] T. Melzer, M. Reiter, and H. Bischof, “Appearance models based on
0.2 kernel canonical correlation analysis,” Pattern Recognit., vol. 36, no. 9,
o1 pp. 1961-1971, 2003.
[8] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical corre-
0 lation analysis,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 1247-1255.
D2 D3 DDSCA [9] P. M. Thompson, T. Ge, D. C. Glahn, N. Jahanshad, and T. E. Nichols,
Fig. 10.  Ablation experimental results with 5-CV on different QTs prop- Genetics of the connectome,” Neuroimage, vol. 80, pp. 475488, 2013.

erties of the human BN atlas.

biomarkers at the coarse-grained and fine-grained levels. We
will later employ more brain atlases to verify the robustness
of DDSCA. Third, the optimization and training processes of
our method are time-consuming, that is, the higher the number
of feature dimensions, the higher the time complexity. Hence,
future work will form an end-to-end deep learning method to
improve performance. Lastly, the number of subjects utilized
in this study is relatively small. In the future, we will collect
and include more data samples and more modalities of imaging
genetics data for AD diagnosis.

V. CONCLUSION

In the work, the edge-level and network-level brain connec-
tion properties are identified from the coarse-grained and fine-
grained levels by performing a comprehensive brain imaging ge-
netics study. Meanwhile, a novel DDSCA method is developed
for identifying associations between genetic variation and brain
network features, which is different from previous works that
only focused on the brain regions. It should be noted that the
traditional association model is unsupervised and the original
data are non-linear with high-dimensional features and fewer
subjects. Based on the above consideration, the label constraint
is incorporated into the DDSCA method, which makes full use of
the diagnosis information. In addition, the deep subspace cluster-
ing is well-suited for reconstructing the real data collected from
the ADNI database. More importantly, this study first attempts
to use the AAL atlas and the human BN atlas to parcellate
the fMRI imaging data, which can identify brain connectome
from the specific brain structure and the fine-grained level. The
efficiency of the DDSCA approach is also proven by extensive
experimental findings.
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